Статистические методы распознавания. Методы распознавания «Физический смысл» и терминология

Статистические методы распознавания. Методы распознавания «Физический смысл» и терминология

Среди методов технической диагностики метод, основанный на обобщенной формуле Бaйeca , занимает особое место благодаря простоте и эффективности.

Разумеется, метод Байеса имеет недостатки: большой объем предварительной информации, «угнетение» редко встречающихся диагнозов и др. Однако в случаях, когда объем статистических данных позволяет применить метод Байеса, его целесообразно использовать как один из наиболее надежных и эффективных методов.

Основы метода. Метод основан на простой формуле Байеса. Если имеется диагноз D i и простой признак k j , встречающийся при этом диагнозе, то вероятность совместного появления событий (наличие у объекта состояния D i и признака k j )

P (D i k j) = P (D i) P (k j /D i) = P (k j) P (D i /k j). (5.4)

Из этого равенства вытекает формула Байеса (см. гл. 11)

P(D i /k j) = P(D i) P(k i /D i)/P(k j ) (5.5)

Очень важно определить точный смысл всех входящих в эту формулу величин.

P (D i ) - вероятность диагнозаD i , определяемая по статистическим данным (априорная вероятность диагноза ). Так, если предварительно обследовано N объектов и у N i объектов имелось состояние D i , то

P (D i ) = N i /N . (5.6)

P (k j /D i ) - k j у объектов с состоянием D i . Если среди N i объектов, имеющих диагнозD i , у N ij проявился признак k j , то

P (k j /D i ) = N ij /N i . (5.7)

P (k j ) - вероятность появления признакаk j во всех объектахнезависимо от состояния (диагноза)объекта. Пусть изобщего числа N объектов признакk j был обнаружену N j объектов, тогда

P(k j ) = N j /N . (5.8)

Для установления диагноза специальное вычисление P (kj ) не требуется. Как будет ясно из дальнейшего, значения P (D i P (k j / D i ), известные для всех возможных состояний, определяют величину P (k j ).

Вравенстве (3.2) P (D i /k j )- вероятность диагноза D i послетого, как сталоизвестно наличие у рассматриваемого объекта признака k j (апостериорная вероятность диагноза ).

Обобщенная формула Байеса. Эта формула относится к случаю, когда обследование проводится по комплексу признаков К , включающему признаки k 1 , k 2 , ..., k v . Каждый из признаков k j имеет m j разрядов (k j l , k j 2 , ..., k js , ..., ). В результате обследования становитсяизвестной реализация признака

k j * = k js (5.9)

и всего комплекса признаков K *. Индекс *, как и раньше, означаетконкретное значение (реализацию) признака. Формула Байеса для комплексапризнаков имеет вид

P (D i /К * )= P (D i )P (К */D i )/P (К * )(i = 1, 2, ..., n ), (5.10)

где P (D i /К * ) - вероятность диагноза D i после того, какстали известны результаты обследования по комплексу признаков К , P (D i ) - предварительная вероятность диагноза D i (по предшествующей статистике).

Формула (5.10) относится к любому из n возможных состояний (диагнозов) системы. Предполагается, что система находится только в одном из указанных состояний ипотому

В практических задачах нередко допускается возможность существования нескольких состояний А 1 , ..., А r , причем некоторые из них могут встретиться в комбинации друг с другом. Тогда в качестве различных диагнозов D i следует рассматривать отдельные состояния D 1 = А 1 , ..., D r = А r и их комбинации D r +1 = А 1 ^ А 2 , … и т. п.

Перейдем к определению P (К */ D i ). Если комплекс признаков состоит из v признаков, то

P (К */ D i ) = P(k 1 */ D i )P (k 2 */k 1 * D i )...P (k v */k l * ...k* v- 1 D i ), (5.12)

где k j * = k js - разряд признака, выявившийся в результате обследования. Для диагностически независимых признаков

P (К */ D i ) = P (k 1 */ D i ) P (k 2 */ D i )... P (k v * / D i ). (5.13)

В большинстве практических задач, особенно при большом числе признаков, можно принимать условие независимости признаков даже при наличии существенных корреляционных связей между ними.

Вероятность появления комплекса признаковК *

P (К *)= P (D s)P (К */D s) . (5.14)

Обобщенная формула Байеса может быть записана так:

P (D i /K * ) (5.15)

где P (К */ D i )определяется равенством (5.12) или (5.13). Изсоотношения (5.15) вытекает

P (D i /К *)=l, (5.16)

что, разумеется, и должно быть, так как один из диагнозов обязательно реализуется, а реализация одновременно двух диагнозов невозможна.

Следует обратить внимание на то, что знаменатель формулы Байеса для всех диагнозов одинаков. Это позволяет сначала определить вероятности совместного появления i -гo диагноза и данной реализации комплекса признаков

P (D i К *) = P (D i )P (К */D i ) (5.17)

и затем апостериорную вероятность диагноза

P (D i /К *) = P (D i К *)/ P (D s К *). (5.18)

Отметим, что иногда целесообразно использовать предварительное логарифмирование формулы (5.15), так как выражение (5.13) содержит произведения малых величин.

Если реализация некоторого комплекса признаков К * является детерминирующей для диагноза D p , то этот комплекс не встречается при других диагнозах:

Тогда, в силу равенства (5.15)

(5.19)

Таким образом, детерминистская логика установления диагноза является частным случаем вероятностной логики. Формула Байеса может использоваться и в том случае, когда часть признаков имеет дискретное распределение, а другая часть - непрерывное. Для непрерывного распределения используются плотности распределения. Однако в расчетном плане указанное различие признаков несущественно, если задание непрерывной кривой осуществляется с помощью совокупности дискретных значений.

Диагностическая матрица. Для определения вероятности диагнозов по методу Байеса необходимо составить диагностическую матрицу (табл. 5.1), которая формируется на основе предварительного статистического материала. В этой таблице содержатся вероятности разрядов признаков при различных диагнозах.

Таблица 5.1

Диагностическая матрица в методе Байеса

Если признаки двухразрядные (простые признаки «да - нет»), то в таблице достаточно указать вероятность появления признака Р (k i /D i). Вероятность отсутствия признака Р ( /D,-) = 1 - Р (k i /D i).

Однако более удобно использовать единообразную форму, полагая, например, для двухразрядного признака Р (k j /D i) = Р (k i 1 /D i ); Р ( /D,) = Р (k i 2 /D i).

Отметим, что P(k js /Di) = 1, где т, - число разрядов признака k j . Сумма вероятностей всех возможных реализаций признака равна единице.

В диагностическую матрицу включены априорные вероятности диагнозов. Процесс обучения в методе Байеса состоит в формировании диагностической матрицы. Важно предусмотреть возможность уточнения таблицы в процессе диагностики. Для этого в памяти ЭВМ следует хранить не только значения P(k js /Di), но и следующие величины: N - общее число объектов, использованных для составления диагностической матрицы; N i - число объектов с диагнозом D i ; N ij - число объектов с диагнозом D i , обследованных по признаку k j . Если поступает новый объект с диагнозом D μ , то проводится корректировка прежних априорных вероятностей диагнозов следующим образом:

(5.20)

Далее вводятся поправки к вероятностям признаков. Пусть у нового объекта с диагнозом D μ выявлен разряд r признака k j . Тогда для дальнейшей диагностики принимаются новые значения вероятности интервалов признака k j при диагнозе D μ :

(5.21)

Условные вероятности признаков при других диагнозах корректировки не требуют.

Пример. Поясним метод Байеса. Пусть при наблюдении за газотурбинным двигателем проверяются два признака: k 1 - повышение температуры газа за турбиной более чем на 50 °С и k 2 - увеличение времени выхода на максимальную частоту вращения более чем на 5 с. Предположим, что для данного типа двигателей появление этих признаков связано либо с неисправностью топливного регулятора (состояние D 1 ,), либо с увеличением радиального зазора в турбине (состояние D 2).

При нормальном состоянии двигателя (состояние D 3)признак k 1 не наблюдается, а признак k 2 наблюдается в 5% случаев. На основании статистических данных известно, что 80% двигателей вырабатывают ресурс в нормальном состоянии, 5% двигателей имеют состояние D 1 и 15% - состояние D 2 . Известно также, что признак k 1 встречается при состоянии D 1 в 20% , а при состоянии D 2 в 40% случаев; признак k 2 при состоянии D 1 встречается в 30%, а при состоянии D 2 - в 50% случаев. Сведем эти данные в диагностическую таблицу (табл. 5.2).

Найдем сначала вероятности состояний двигателя, когда обнаружены оба признака k 1 и k 2 . Для этого, считая признаки независимыми, применим формулу (5.15).

Вероятность состояния

Аналогично получим Р (D 2 /k 1 k 2) = 0,91; Р (D 3 /k 1 k 2) = 0.

Определим вероятность состояний двигателя, если обследование показало, что повышение температуры не наблюдается (признак k 1 ), но увеличивается время выхода на максимальную частоту вращения (признак k 2 наблюдается). Отсутствие признака k 1 есть признак наличия (противоположное событие), причем Р ( /Di) = 1 - Р (k 1 /Di).

Для расчета применяют также формулу (5.15), но значение Р (k 1 /Di) в диагностической таблице заменяют на Р ( /Di). В этом случае

и аналогично Р (D 2 / k 2) = 0,46; Р (D 3 / k 2) = 0,41. Вычислим вероятности состояний в том случае, когда оба признака отсутствуют. Аналогично предыдущему получим

Отметим, что вероятности состояний D 1 и D 2 отличны от нуля, так как рассматриваемые признаки не являются для них детерминирующими. Из проведенных расчетов можно установить, что при наличии признаков k 1 и k 2 в двигателе с вероятностью 0,91 имеется состояние D 1 , т.е. увеличение радиального зазора. При отсутствии обоих признаков наиболее вероятно нормальное состояние (вероятность 0,92). При отсутствии признака k 1 и наличии признака k 2 вероятности состояний D 2 и D 3 примерно одинаковы (0,46 и 0,41) и для уточнения состояния двигателя требуется проведение дополнительных обследований.

Таблица 5.2

Вероятности признаков и априорные вероятности состояний

Решающее правило - правило, в соответствии с которым принимается решение о диагнозе. В методе Байеса объект с комплексом признаков К * относится к диагнозу с наибольшей (апостериорной) вероятностью

K* D i ,если P(D i /K *) > P(D j /K *) (j = 1, 2,..., n ; i ≠ j ). (5.22)

Символ , применяемый в функциональном анализе, означает принадлежность множеству. Условие (5.22) указывает, что объект, обладающий данной реализацией комплекса признаков К * или, короче, реализация К * принадлежит диагнозу (состоянию) D i . Правило (5.22) обычно уточняется введением порогового значения для вероятности диагноза:

P (D i / K *) P i , (5.23)

где P i . - заранее выбранный уровень распознавания для диагноза D i . При этом вероятность ближайшего конкурирующего диагноза не выше 1 – P i . Обычно принимается P i ≥ 0,9. При условии

P(D i / K *)

(5.24)

решение о диагнозе не принимается (отказ от распознавания) и требуется поступление дополнительной информации.

Процесс принятия решения в методе Байеса при расчете на ЭВМ происходит достаточно быстро. Например, постановка диагноза для 24 состояний при 80 многоразрядных признаках занимает на ЭВМ с быстродействием 10 - 20 тысяч операций в секунду всего несколько минут.

Как указывалось, методу Байеса присущи некоторые недостатки, например погрешности при распознавании редких диагнозов. При практических расчетах целесообразно провести диагностику и для случая равновероятностных диагнозов, положив

P(D i) = l / n (5.25)

Тогда наибольшим значением апостериорной вероятности будет обладать диагноз D i , для которого Р (K* /D i) максимальна:

K* D i ,если P(K* /D i) > P(K* /D j) (j = 1, 2,..., n ; i ≠ j ). (5.26)

Иными словами, устанавливается диагноз D i если данная совокупность признаков чаще встречается при диагнозе D i , чем при других диагнозах. Такое решающее правило соответствует методу максимального правдоподобия. Из предыдущего вытекает, что этот метод является частным случаем метода Байеса при одинаковых априорных вероятностях диагнозов. В методе максимального правдоподобия «частые» и «редкие» диагнозы равноправны.

Для надежности распознавания условие (5.26) должно быть дополнено пороговым значением

P(K */D i) ≥ P i , (5.27)

где P i - заранее выбранный уровень распознавания для диагноза D i .

К настоящему моменту разработано большое количество методов, применение которых позволяет распознать вид технического состояния диагностируемого объекта. В данной работе рассмотрены лишь некоторые из них, наиболее широко используемые в практике диагностирования.

Метод Байеса

Метод диагностирования, основанный на применении формулы Байеса, относится к статистическим методам распознавания.

Вероятность события А, которое может наступить лишь при появлении одного из несовместимых событий 2? 1? В 2 ,..., В п, равна сумме произведений вероятностей каждого из этих событий на соответствующую вероятность события А:

Эту формулу называют формулой полной вероятности. Следствие теоремы умножения и формулы полной вероятности - так называемая теория гипотез. Предположим, что событие А может наступить лишь при появлении одного из несовместных событий В , В 2 , ..., В п, но поскольку заранее неизвестно, какое из них наступит, их называют гипотезами. Вероятность появления события Л определяют по формуле полной вероятности (1.5), а условную вероятность Р А (В/) по формуле

Подставив значение Р(Л), получим

Формулу (1.6) называют формулой Байеса. Она позволяет переоценить вероятности гипотез после того, как станут известными результаты испытания, в ходе которого появилось событие А.

Выявление величин условных вероятностей появления признака является ключом к использованию формулы Байеса для диагностики состояния. Байесовский подход широко используется в науке об управлении, теории обнаружения сигналов и распознавания образов, в медицинской и технической диагностике.

Рассмотрим суть метода применительно к задаче диагностирования. Подробно математическая сторона вопроса изложена в работе Ц3]. В процессе эксплуатации любой объект может находиться в одном из возможных состояний TVj, ...,Nj (в простейшем случае - «норма», «отказ»), которым ставятся в соответствие гипотезы (диагнозы) Z)j,...,Z) ; . В процессе эксплуатации объекта контролируются параметры (признаки) к, ..., kj. Вероятность совместного наличия у объекта состояния Z)- и признака kj определяется

где Р(Dj) - вероятность диагноза Dj, определяемая по статистическим данным:

где п - количество обследованных объектов;

Nj - количество состояний;

P(kj /Dj) kj у объектов с состоянием Dj. Если среди п объектов, имеющих диагноз Dj, у проявился признак kj, то

Р(кр - вероятность появления признака kj во всех объектах независимо от состояния (диагноза) объекта. Пусть из общего числа п объектов признак kj был обнаружен у rij объектов, тогда

P(Dj/kj ) - вероятность диагноза Z) ; после того, как стало известно наличие у рассматриваемого объекта признака к-.

Обобщенная формула Байеса относится к случаю, когда обследование проводится по комплексу признаков К, включающему признаки (ку, к п). Каждый из признаков kj имеет rrij разрядов (,к д,

kj 2 , ..., kj s , ..., k jm). В результате обследования становиться известной

реализация признака к.-к . и всего комплекса признаков К . Ин-

деке означает конкретное значение признака. Формула Байеса для комплекса признаков имеет вид

где P(Dj /А*) - вероятность диагноза?Г после того, как стали известны результаты обследования по комплексу признаков К;

P(Dj) - предварительная вероятность диагноза Dj.

Предполагается, что система находится только в одном из указанных состояний, т.е.

Для определения вероятности диагноза по методу Байеса на основе предварительного статистического материала формируется диагностическая матрица (табл. 1.1). Количество строк соответствует количеству возможных диагнозов. Количество столбцов рассчитывается как сумма произведений количества признаков на соответствующее им количество разрядов плюс один для априорных вероятностей диагнозов. В этой таблице содержатся вероятности разрядов признаков при различных диагнозах. Если призна-

ки двухразрядные (простые признаки «да - нет»), то в таблице достаточно указать вероятность появления признака Р(к- /Dj). Вероятность отсутствия признака I. Более удобно

использовать единообразную форму, полагая, например, для двухразрядного признака . Следует уточнить, что , где nij - число разрядов признака kj. Сумма вероятностей всех возможных реализаций признака равна единице. Решающее правило - это правило, в соответствии с которым принимается решение о диагнозе. В методе Байеса объект с комплексом признаков ft относится к диагнозу с наибольшей (апостериорной) вероятностью ft е Dj, если P(Dj/lt) >

> P(Dj/ft) (J - 1, 2, ..., n i * j). Это правило обычно уточняется введением порогового значения для вероятности диагноза P(Dj/ft) >

> Pj, где Pj - заранее выбранный уровень распознавания для диагноза Dj. При этом вероятность ближайшего конкурирующего диагноза не выше 1 - Pj. Обычно принимается Р { > 0,9. При условии PiD/t?) решение о диагнозе не принимается и требуется поступление дополнительной информации.

Таблица 1.1

Диагностическая матрица в методе Байеса

Признак kj

Р(к 12 /

Р(к 22 /

Р(к п /

Пример. Под наблюдением находится тепловозный дизель. При этом проверяются два признака: к - увеличение часового расхода топлива дизелем на номинальной позиции контроллера машиниста более чем на 10 % от паспортного значения, к 2 - снижение мощности дизель-генераторной установки на номинальной позиции контроллера машиниста более чем на 15 % от паспортного значения. Предположим, что появление этих признаков связано либо с повышенным износом деталей цилиндро-поршневой группы (диагноз /)]), либо с неисправностью топливной аппаратуры (диагноз D 2). При исправном состоянии дизеля (диагноз D 3) признак к не наблюдается, а признак к 2 наблюдается в 7 % случаев. По статистическим данным установлено, что с диагнозом Z) 3 до планового ремонта дорабатывают 60 % двигателей, с диагнозом D 2 - 30 %, с диагнозом Z)j - 10 %. Также установлено, что признак к j при состоянии Z)| встречается в 10 %, а при состоянии D 2 - в 40 % случаев; признак к 2 при состоянии Z)| встречается в 15 %, а при состоянии D 2 - в 20 % случаев. Исходную информацию представим в виде табл. 1.2.

Таблица 1.2

Вероятности состояний и проявления признаков

Р(к 2 / А)

Рассчитаем вероятности состояний при различных вариантах реализации контролируемых признаков:

1. Признаки к и к 2 обнаружены, тогда:

2. Признак к обнаружен, признак к 2 отсутствует.

Отсутствие признака k i означает присутствие признака к. (противоположное событие), причем P(k./D.)-- P(k./D.).

3. Признак к 2 обнаружен, признак к отсутствует:

4. Признаки /:| и к 2 отсутствуют:

Анализ полученных результатов расчета позволяет сделать следующие выводы:

  • 1. Наличие двух признаков к и к 2 с вероятностью 0,942 свидетельствует о состоянии Dj
  • 2. Наличие признака к с вероятностью 0,919 свидетельствует о состоянии D 2 (неисправность топливной аппаратуры).
  • 3. Наличие признака к 2 с вероятностью 0,394 свидетельствует о состоянии D 2 (неисправность топливной аппаратуры) и с вероятностью 0,459 о состоянии Z) 3 (исправное стояние). При таком соотношении вероятностей принятие решения затруднено, поэтому требуется проведение дополнительных обследований.
  • 4. Отсутствие обоих признаков с вероятностью 0,717 свидетельствует об исправном состоянии (Z) 3).
Наименование параметра Значение
Тема статьи: Метод Байеса
Рубрика (тематическая категория) Технологии

Постановка задач технической диагностики

Основные направления технической диагностики

Основы технической диагностики

РАЗДЕЛ №5

Определœения. Термин ʼʼдиагностикаʼʼ происходит от греческого слова ʼʼдиагнозисʼʼ, что означает распознавание, определœение.

В процессе диагностики устанавливается диагноз, ᴛ.ᴇ. определяется состояние больного (медицинская диагностика) или состояние технической системы (техническая диагностика).

Технической диагностикой принято называть наука о распознавании состояния технической системы.

Цели технической диагностики. Рассмотрим кратко основное содержание технической диагностики. Техническая диагностика изучает методы получения и оценки диагностической информации, диагностические модели и алгоритмы принятия решений. Целью технической диагностики является повышение надежности и ресурса технических систем.

Как известно, наиболее важным показателœем надежности является отсутствие отказов во время функционирования (работы) технической системы. Отказ авиационного двигателя в полетных условиях, судовых механизмов во время плавания корабля, энергетических установок в работе под нагрузкой может привести к тяжелым последствиям.

Техническая диагностика благодаря раннему обнаружению Дефектов и неисправностей позволяет устранить подобные отказы в процессе технического обслуживания, что повышает надежность и эффективность эксплуатации, а также дает возможность эксплуатации технических систем ответственного назначения по состоянию.

В практике ресурс таких систем определяется по наиболее ʼʼслабымʼʼ экземплярам изделий. При эксплуатации по состоянию каждый экземпляр эксплуатируется до предельного состояния в соответствии с рекомендациями системы технической диагностики. Эксплуатация по техническому состоянию может принœести выгоду, эквивалентную стоимости 30% общего парка машин.

Основные задачи технической диагностики. Техническая диагностика решает обширный круг задач, многие из которых являются смежными с задачами других научных дисциплин. Основной задачей технической диагностики является распознавание состояния технической системы в условиях ограниченной информации.

Техническую диагностику иногда называют безразборной диагностикой, т. е. диагностикой, осуществляемой без разборки изделия. Анализ состояния проводится в условиях эксплуатации, при которых получение информации крайне затруднено. Часто не представляется возможным по имеющейся информации сделать однозначное заключение и приходится использовать статистические методы.

Теоретическим фундаментом для решения основной задачи технической диагностики следует считать общую теорию распознавания образцов. Эта теория, составляющая важный раздел технической кибернетики, занимается распознаванием образов любой природы (геометрических, звуковых и т.п.), машинным распознаванием речи, печатного и рукописного текстов и т.д. Техническая диагностика изучает алгоритмы распознавания применительно к задачам диагностики, которые обычно могут рассматриваться как задачи классификации.

Алгоритмы распознавания в технической диагностике частично основываются на диагностических моделях, устанавливающих связь между состояниями технической системы и их отображениями в пространстве диагностических сигналов. Важной частью проблемы распознавания являются правила принятия решений (решающие правила).

Решение диагностической задачи (отнесение изделия к исправным или неисправным) всœегда связано с риском ложной тревоги или пропуска цели. Для принятия обоснованного решения целœесообразно привлекать методы теории статистических решений, разработанные впервые в радиолокации.

Решение задач технической диагностики всœегда связано с прогнозированием надежности на ближайший период эксплуатации (до следующего технического осмотра). Здесь решения должны основываться на моделях отказов, изучаемых в теории надежности.

Вторым важным направлением технической диагностики является теория контролеспособности. Контролеспособностью принято называть свойство изделия обеспечивать достоверную оценку его

технического состояния и раннее обнаружение неисправностей и отказов. Контролеспособность создается конструкцией изделия и принятой системой технической диагностики.

Крупной задачей теории контролеспособности является изучение средств и методов получения диагностической информации. В сложных технических системах используется автоматизированный контроль состояния, которым предусматривается обработка диагностической информации и формирование управляющих сигналов. Методы проектирования автоматизированных систем контроля составляют одно из направлений теории контролеспособности. Наконец, очень важные задачи теории контролеспособности связаны с разработкой алгоритмов поиска неисправностей, разработкой диагностических тестов, минимизацией процесса установления диагноза.

По причине того, что техническая диагностика развивалась первоначально только для радиоэлектронных систем, многие авторы отождествляют теорию технической диагностики с теорией контролеспособности (поиском и контролем неисправностей), что, конечно, ограничивает область приложения технической диагностики.

Структура технической диагностики. На рис. 5.1 показана структура технической диагностики. Она характеризуется двумя взаимопроникающими и взаимосвязанными направлениями: теорией распознавания и теорией контролеспособности. Теория распознавания содержит разделы, связанные с построением алгоритмов распознавания, решающих правил и диагностических моделœей. Теория контролеспособности включает разработку средств и методов получения диагностической информации, автоматизированный контроль и поиск неисправностей. Техническую диагностику следует рассматривать как раздел общей теории надежности.

Рис. 5.1. Структура технической диагностики

Вводные замечания. Пусть требуется определить состояние шлицевого соединœения валов редуктора в эксплуатационных условиях. При большом износœе шлицев появляются перекосы и усталостные разрушения. Непосредственный осмотр шлицев невозможен, так как требует разборки редуктора, т. е. прекращения эксплуатации. Неисправность шлицевого соединœения может повлиять на спектр колебаний корпуса редуктора, акустические колебания, содержание желœеза в масле и другие параметры.

Задача технической диагностики состоит в определœении степени износа шлицев (глубины разрушенного поверхностного слоя) по данным измерений ряда косвенных параметров. Как указывалось, одной из важных особенностей технической диагностики является распознавание в условиях ограниченной информации, когда требуется руководствоваться определœенными приемами и правилами для принятия обоснованного решения.

Состояние системы описывается совокупностью (множеством) определяющих ее параметров (признаков). Разумеется, что множество определяющих параметров (признаков) должна быть различным, в первую очередь, в связи с самой задачей распознавания. К примеру, для распознавания состояния шлицевого соединœения двигателя достаточна некоторая группа параметров, но она должна быть дополнена, в случае если проводится диагностика и других деталей.

Распознавание состояния системы - отнесение состояния системы к одному из возможных классов (диагнозов). Число диагнозов (классов, типичных состояний, эталонов) зависит от особенностей задачи и целœей исследования.

Часто требуется провести выбор одного из двух диагнозов (дифференциальная диагностика или дихотомия); к примеру, ʼʼисправное состояниеʼʼ и ʼʼнеисправное состояниеʼʼ. В других случаях крайне важно более подробно охарактеризовать неисправное состояние, к примеру повышенный износ шлицев, возрастание вибраций лопаток и т. п. В большинстве задач технической диагностики диагнозы (классы) устанавливаются заранее, и в этих условиях задачу распознавания часто называют задачей классификации.

Так как техническая диагностика связана с обработкой большого объёма информации, то принятие решений (распознавание) часто осуществляется с помощью электронных вычислительных машин (ЭВМ).

Совокупность последовательных действий в процессе распознавания принято называть алгоритмом распознавания. Существенной частью процесса распознавания является выбор параметров, описывающих состояние системы. Οʜᴎ должны быть достаточно информативны, чтобы при выбранном числе диагнозов процесс разделœения (распознавания) мог быть осуществлен.

Математическая постановка задачи. Взадачах диагностики состояние системы часто описывается с помощью комплекса признаков

K = (k l , k 2 ,..., k j ,..., k v ), (5.1)

где k j - признак, имеющий m j разрядов.

Пусть, к примеру, признак k j представляет собой трехразрядный признак (m j = 3), характеризующий величину температуры газа за турбиной: пониженная, нормальная, повышенная. Каждый разряд (интервал) признака k j обозначается k js , к примеру повышенная температура за турбиной k j з. Фактически наблюдаемое состояние соответствует определœенной реализации признака, что отмечается верхним индексом *. К примеру, при повышенной температуре реализация признака k* j = k j з.

Вобщем случае каждый экземпляр системы соответствует некоторой реализации комплекса признаков:

K * = (k 1 * , k 2 * ,..., k j * ,..., k v * ). (5.2)

Во многих алгоритмах распознавания удобно характеризовать систему параметрами x j , образующими v - мepный вектор или точку в v -мepнoм пространстве:

X = (x l , x 2 , x j , , x v ). (5.3)

Вбольшинстве случаев параметры x j имеют непрерывное распределœение. К примеру, пусть x j - параметр, выражающий температуру за турбиной. Предположим, что соответствие между параметром x j (° C) итрехразрядным признаком k j таково:

< 450 к j l

450 - 550 к j 2

> 500 к j 3

В данном случае с помощью признака k j получается дискретное описание, тогда как параметр x j дает непрерывное описание. Отметим, что при непрерывном описании обычно требуется значительно больший объём предварительной информации, но описание получается более точным. В случае если, однако, известны статистические законы распределœения параметра, то необходимый объём предварительной информации сокращается.

Из предыдущего ясно, что принципиальных отличий при описании системы с помощью признаков или параметров нет, и в дальнейшем будут использованы оба вида описания.

Как указывалось, в задачах технической диагностики возможные состояния системы - диагнозы D i - считаются известными.

Существуют два базовых подхода к задаче распознавания: вероятностный идетерминистский . Постановка задачи при вероятностных методах распознавания такова. Имеется система, которая находится в одном из ислучайных состояний D i . Известна совокупность признаков (параметров), каждый из которых с определœенной вероятностью характеризует состояние системы. Требуется построить решающее правило, с помощью которого предъявленная (диагностируемая) совокупность признаков была бы отнесена к одному из возможных состояний (диагнозов). Желательно также оценить достоверность принятого решения и степень риска ошибочного решения.

При детерминистских методах распознавания удобно формулировать задачу на геометрическом языке. В случае если система характеризуется v -мерным вектором X , то любое состояние системы представляет собой точку в v-мерном пространстве параметров (признаков). Предполагается, что диагноз D, соответствует некоторой области рассматриваемого пространства признаков. Требуется найти решающее правило, в соответствии с которым предъявленный вектор X * (диагностируемый объект) будет отнесен к определœенной области диагноза. Таким образом задача сводится к разделœению пространства признаков на области диагнозов.

При детерминистском подходе области диагнозов обычно считаются ʼʼнепересекающимисяʼʼ, ᴛ.ᴇ. вероятность одного диагноза (в область которого попадает точка) равна единице, вероятность других равна нулю. Подобным образом предполагается, что и каждый признак либо встречается при данном диагнозе, либо отсутствует.

Вероятностный и детерминистский подходы не имеют принципиальных различий. Более общими являются вероятностные методы, но они часто требуют и значительно большего объёма предварительной информации. Детерминистские подходы более кратко описывают существенные стороны процесса распознавания, меньше зависят от избыточной, малоценной информации, больше соответствуют логике мышления человека.

В последующих главах излагаются основные алгоритмы распознавания в задачах технической диагностики.

Среди методов технической диагностики метод, основанный на обобщенной формуле Бaйeca , занимает особое место благодаря простоте и эффективности.

Разумеется, метод Байеса имеет недостатки: большой объём предварительной информации, ʼʼугнетениеʼʼ редко встречающихся диагнозов и др.
Размещено на реф.рф
При этом в случаях, когда объём статистических данных позволяет применить метод Байеса, его целœесообразно использовать как один из наиболее надежных и эффективных методов.

Основы метода. Метод основан на простой формуле Байеса. В случае если имеется диагноз D i и простой признак k j , встречающийся при этом диагнозе, то вероятность совместного появления событий (наличие у объекта состояния D i и признака k j )

P (D i k j) = P (D i) P (k j /D i) = P (k j) P (D i /k j). (5.4)

Из этого равенства вытекает формула Байеса (см. гл. 11)

P(D i /k j) = P(D i) P(k i /D i)/P(k j ) (5.5)

Очень важно определить точный смысл всœех входящих в эту формулу величин.

P (D i ) - вероятность диагнозаD i , определяемая по статистическим данным (априорная вероятность диагноза ). Так, в случае если предварительно обследовано N объектов и у N i объектов имелось состояние D i , то

P (D i ) = N i /N . (5.6)

P (k j /D i ) - k j у объектов с состоянием D i . В случае если среди N i объектов, имеющих диагнозD i , у N ij проявился признак k j , то

P (k j /D i ) = N ij /N i . (5.7)

P (k j ) - вероятность появления признакаk j во всœех объектахнезависимо от состояния (диагноза)объекта. Пусть изобщего числа N объектов признакk j был обнаружену N j объектов, тогда

P(k j ) = N j /N . (5.8)

Для установления диагноза специальное вычисление P (kj ) не требуется. Как будет ясно из дальнейшего, значения P (D i P (k j / D i ), известные для всœех возможных состояний, определяют величину P (k j ).

Вравенстве (3.2) P (D i /k j )- вероятность диагноза D i послетого, как сталоизвестно наличие у рассматриваемого объекта признака k j (апостериорная вероятность диагноза ).

Обобщенная формула Байеса. Эта формула относится к случаю, когда обследование проводится по комплексу признаков К , включающему признаки k 1 , k 2 , ..., k v . Каждый из признаков k j имеет m j разрядов (k j l , k j 2 , ..., k js , ..., ). В результате обследования становитсяизвестной реализация признака

k j * = k js (5.9)

и всœего комплекса признаков K *. Индекс *, как и раньше, означаетконкретное значение (реализацию) признака. Формула Байеса для комплексапризнаков имеет вид

P (D i /К * )= P (D i )P (К */D i )/P (К * )(i = 1, 2, ..., n ), (5.10)

где P (D i /К * ) - вероятность диагноза D i после того, какстали известны результаты обследования по комплексу признаков К , P (D i ) - предварительная вероятность диагноза D i (по предшествующей статистике).

Формула (5.10) относится к любому из n возможных состояний (диагнозов) системы. Предполагается, что система находится только в одном из указанных состояний ипотому

В практических задачах нередко допускается возможность существования нескольких состояний А 1 , ..., А r , причем некоторые из них могут встретиться в комбинации друг с другом. Тогда в качестве различных диагнозов D i следует рассматривать отдельные состояния D 1 = А 1 , ..., D r = А r и их комбинации D r +1 = А 1 ^ А 2 , … и т. п.

Перейдем к определœению P (К */ D i ). В случае если комплекс признаков состоит из v признаков, то

P (К */ D i ) = P(k 1 */ D i )P (k 2 */k 1 * D i )...P (k v */k l * ...k* v- 1 D i ), (5.12)

где k j * = k js - разряд признака, выявившийся в результате обследования. Для диагностически независимых признаков

P (К */ D i ) = P (k 1 */ D i ) P (k 2 */ D i )... P (k v * / D i ). (5.13)

В большинстве практических задач, особенно при большом числе признаков, можно принимать условие независимости признаков даже при наличии существенных корреляционных связей между ними.

Вероятность появления комплекса признаковК *

P (К *)= P (D s)P (К */D s) . (5.14)

Обобщенная формула Байеса должна быть записана так:

P (D i /K * ) (5.15)

где P (К */ D i )определяется равенством (5.12) или (5.13). Изсоотношения (5.15) вытекает

P (D i /К *)=l, (5.16)

что, разумеется, и должно быть, так как один из диагнозов обязательно реализуется, а реализация одновременно двух диагнозов невозможна.

Следует обратить внимание на то, что знаменатель формулы Байеса для всœех диагнозов одинаков. Это позволяет сначала определить вероятности совместного появления i -гo диагноза и данной реализации комплекса признаков

P (D i К *) = P (D i )P (К */D i ) (5.17)

и затем апостериорную вероятность диагноза

P (D i /К *) = P (D i К *)/P (D s К *). (5.18)

Отметим, что иногда целœесообразно использовать предварительное логарифмирование формулы (5.15), так как выражение (5.13) содержит произведения малых величин.

В случае если реализация некоторого комплекса признаков К * является детерминирующей для диагноза D p , то данный комплекс не встречается при других диагнозах:

Тогда, в силу равенства (5.15)

(5.19)

Τᴀᴋᴎᴍ ᴏϬᴩᴀᴈᴏᴍ, детерминистская логика установления диагноза является частным случаем вероятностной логики. Формула Байеса может использоваться и в том случае, когда часть признаков имеет дискретное распределœение, а другая часть - непрерывное. Стоит сказать, что для непрерывного распределœения используются плотности распределœения. При этом в расчетном плане указанное различие признаков несущественно, в случае если задание непрерывной кривой осуществляется с помощью совокупности дискретных значений.

Диагностическая матрица. Для определœения вероятности диагнозов по методу Байеса крайне важно составить диагностическую матрицу (табл. 5.1), которая формируется на базе предварительного статистического материала. В этой таблице содержатся вероятности разрядов признаков при различных диагнозах.

Таблица 5.1

Диагностическая матрица в методе Байеса

Диагноз D i Признак k j P(D i)
k 1 k 2 k 3
P(k 11 /D i) P(k 12 /D i) P(k 13 /D i) P(k 21 /D i) P(k 22 /D i) P(k 23 /D i) P(k 24 /D i) P(k 31 /D i) P(k 32 /D i)
D 1 0,8 0,2 0,1 0,1 0,6 0,2 0,2 0,8 0,3
D 2 0,1 0,7 0,2 0,3 0,7 0,1 0,9 0,1

В случае если признаки двухразрядные (простые признаки ʼʼда - нетʼʼ), то в таблице достаточно указать вероятность появления признака Р (k i /D i). Вероятность отсутствия признака Р ( /D,-) = 1 - Р (k i /D i).

При этом более удобно использовать единообразную форму, полагая, к примеру, для двухразрядного признака Р (k j /D i) = Р (k i 1 /D i ); Р ( /D,) = Р (k i 2 /D i).

Отметим, что P(k js /Di) = 1, где т, - число разрядов признака k j . Сумма вероятностей всœех возможных реализаций признака равна единице.

В диагностическую матрицу включены априорные вероятности диагнозов. Процесс обучения в методе Байеса состоит в формировании диагностической матрицы. Важно предусмотреть возможность уточнения таблицы в процессе диагностики. Для этого в памяти ЭВМ следует хранить не только значения P(k js /Di), но и следующие величины: N - общее число объектов, использованных для составления диагностической матрицы; N i - число объектов с диагнозом D i ; N ij - число объектов с диагнозом D i , обследованных по признаку k j . В случае если поступает новый объект с диагнозом D μ , то проводится корректировка прежних априорных вероятностей диагнозов следующим образом:

(5.20)

Далее вводятся поправки к вероятностям признаков. Пусть у нового объекта с диагнозом D μ выявлен разряд r признака k j . В этом случае для дальнейшей диагностики принимаются новые значения вероятности интервалов признака k j при диагнозе D μ :

(5.21)

Условные вероятности признаков при других диагнозах корректировки не требуют.

Пример. Поясним метод Байеса. Пусть при наблюдении за газотурбинным двигателœем проверяются два признака: k 1 - повышение температуры газа за турбиной более чем на 50 °С и k 2 - увеличение времени выхода на максимальную частоту вращения более чем на 5 с. Предположим, что для данного типа двигателœей появление этих признаков связано либо с неисправностью топливного регулятора (состояние D 1 ,), либо с увеличением радиального зазора в турбинœе (состояние D 2).

При нормальном состоянии двигателя (состояние D 3)признак k 1 не наблюдается, а признак k 2 наблюдается в 5% случаев. На основании статистических данных известно, что 80% двигателœей вырабатывают ресурс в нормальном состоянии, 5% двигателœей имеют состояние D 1 и 15% - состояние D 2 . Известно также, что признак k 1 встречается при состоянии D 1 в 20% , а при состоянии D 2 в 40% случаев; признак k 2 при состоянии D 1 встречается в 30%, а при состоянии D 2 - в 50% случаев. Сведем эти данные в диагностическую таблицу (табл. 5.2).

Найдем сначала вероятности состояний двигателя, когда обнаружены оба признака k 1 и k 2 . Для этого, считая признаки независимыми, применим формулу (5.15).

Вероятность состояния

Аналогично получим Р (D 2 /k 1 k 2) = 0,91; Р (D 3 /k 1 k 2) = 0.

Определим вероятность состояний двигателя, в случае если обследование показало, что повышение температуры не наблюдается (признак k 1 2 отличны от нуля, так как рассматриваемые признаки не являются для них детерминирующими. Из проведенных расчетов можно установить, что при наличии признаков k 1 и k 2 в двигателœе с вероятностью 0,91 имеется состояние D 1 , ᴛ.ᴇ. увеличение радиального зазора. При отсутствии обоих признаков наиболее вероятно нормальное состояние (вероятность 0,92). При отсутствии признака k 1 и наличии признака k 2 вероятности состояний D 2 и D 3 примерно одинаковы (0,46 и 0,41) и для уточнения состояния двигателя требуется проведение дополнительных обследований.

Таблица 5.2

Вероятности признаков и априорные вероятности состояний

D i P(k 1 /D i) P(k 2 /D i) P(D i)
D 1 0,2 0,3 0,05
D 2 0,4 0,5 0,15
D 3 0,0 0,05 0,80

Решающее правило - правило, в соответствии с которым принимается решение о диагнозе. В методе Байеса объект с комплексом признаков К * относится к диагнозу с наибольшей (апостериорной) вероятностью

K*D i ,если P(D i /K *) > P(D j /K *) (j = 1, 2,..., n ; i ≠ j ). (5.22)

Символ , применяемый в функциональном анализе, означает принадлежность множеству. Условие (5.22) указывает, что объект, обладающий данной реализацией комплекса признаков К * или, короче, реализация К * принадлежит диагнозу (состоянию) D i . Правило (5.22) обычно уточняется введением порогового значения для вероятности диагноза:

P (D i / K *) P i , (5.23)

где P i . - заранее выбранный уровень распознавания для диагноза D i . При этом вероятность ближайшего конкурирующего диагноза не выше 1 – P i . Обычно принимается P i ≥ 0,9. При условии

P(D i / K *)

(5.24)

решение о диагнозе не принимается (отказ от распознавания) и требуется поступление дополнительной информации.

Процесс принятия решения в методе Байеса при расчете на ЭВМ происходит достаточно быстро. К примеру, постановка диагноза для 24 состояний при 80 многоразрядных признаках занимает на ЭВМ с быстродействием 10 - 20 тысяч операций в секунду всœего несколько минут.

Как указывалось, методу Байеса присущи некоторые недостатки, к примеру погрешности при распознавании редких диагнозов. При практических расчетах целœесообразно провести диагностику и для случая равновероятностных диагнозов, положив

P(D i) = l / n (5.25)

Тогда наибольшим значением апостериорной вероятности будет обладать диагноз D i , для которого Р (K* /D i) максимальна:

K*D i ,если P(K* /D i) > P(K* /D j) (j = 1, 2,..., n ; i ≠ j ). (5.26)

Иными словами, устанавливается диагноз D i если данная совокупность признаков чаще встречается при диагнозе D i , чем при других диагнозах. Такое решающее правило соответствует методу максимального правдоподобия. Из предыдущего вытекает, что данный метод является частным случаем метода Байеса при одинаковых априорных вероятностях диагнозов. В методе максимального правдоподобия ʼʼчастыеʼʼ и ʼʼредкиеʼʼ диагнозы равноправны.

Стоит сказать, что для надежности распознавания условие (5.26) должно быть дополнено пороговым значением

P(K */D i) ≥ P i , (5.27)

где P i - заранее выбранный уровень распознавания для диагноза D i .

Метод Байеса - понятие и виды. Классификация и особенности категории "Метод Байеса" 2017, 2018.

МЕТОД ПОСЛЕДОВАТЕЛЬНОГО АНАЛИЗА

МЕТОД БАЙЕСА

План лекции

Анализ и проверка домашней работы

Организационный момент.

Ход лекции.

Лекция 9

Тема. СТАТИСТИЧЕСКИЕ МЕТОДЫ РАСПОЗНАВАНИЯ

Цель. Дать понятие распознавания цифрового сигнала.

1. Учебная. Разъяснить процесс распознавания цифрового сигнала.

2. Развивающая. Развивать логическое мышление и естественное - научное мировоззрение.

3. Воспитательная . Воспитывать интерес к научным достижениям и открытиям в отрасли телекоммуникации.

Межпредметные связи:

· Обеспечивающие: информатика, математика, вычислительная техника и МП, системы программирования.

· Обеспечиваемые: Стажерская практика

Методическое обеспечение и оборудование:

1. Методическая разработка к занятию.

2. Учебный план.

3. Учебная программа

4. Рабочая программа.

5. Инструктаж по технике безопасности.

Технические средства обучения: персональный компьютер.

Обеспечение рабочих мест:

· Рабочие тетради

3. Ответьте на вопросы:

1. В чем заключается отличие цифровых сигналов от аналоговых?

2. Какие классы диаграмм используются при проведении измерений?

3. Дайте краткое описание каждому классу.

4. Что используется для построения глазковой диаграммы?

5. Поясните суть глазковой диаграммы.

· Основы метода

  • Обобщенная формула Байеса.

· Диагностическая матрица.

· Решающее правило

· Основы метода.

· Общая процедура метода.

· Связь границ принятия решения с вероятностями ошибок пер­вого и второго рода.

Основное преимущество статистических методов распознавания состоит в возможности одновременного учета признаков различной физической природы, так как они характеризуются безразмерными величинами - вероятностями их появления при различных состояниях системы .

Среди методов технической диагностики метод, основанный на обобщенной формуле Байеса (Теорема Байеса (или формула Байеса) - одна из основных теорем теории вероятностей, которая позволяет определить вероятность того, что произошло какое-либо событие(гипотеза) при наличии лишь косвенных тому подтверждений (данных), которые могут быть неточны ), занимает особое место благо­даря простоте и эффективности.

Метод Байеса имеет недостатки: большой объем предварительной информации, «угнетение» редко встречающихся диагнозов и др. Однако в случаях, когда объем статистических данных позволяет применить метод Байеса, его целесообразно использовать как один из наиболее надежных и эффективных методов.


Основы метода. Метод основан на простой формуле Байеса. Если имеется диагноз D i и простой признак ki, встре­чающийся при этом диагнозе, то вероятность совместного появ­ления событий (наличие у объекта состояния Di и признака ki)

Из этого равенства вытекает формула Байеса

(3.2)

Очень важно определить точный смысл всех входящих в эту формулу величин.

P(Di)- априорная вероятность гипотезы D

P(ki/Di) - вероятность гипотезы ki при наступлении события D (апостериорная вероятность - вероятность случайного события при условии того, что известны апостериорные данные, т.е. полученные после опыта.)

P(ki) - полная вероятность наступления события ki

P(Di/ki) - вероятность наступления события Di при истинности гипотезы ki

Р(D)- вероятность диагноза D , определяемая по стати­стическим данным (априорная вероятность диагноза). Так, если предварительно обследовано N объектов и у W,- объектов имелось состояние D, то

P(D i) = N i /N. (3.3)

Р (kj/Di) - вероятность появления признака k j ; у объектов с со­стоянием Di. Если среди Ni, объектов, имеющих диагноз Di, у N ij проявился признак k j то

(3.4)

Р (kj) - вероятность появления признака kj во всех объектах независимо от состояния (диагноза) объекта . Пусть из общего числа N объектов признак к } был обнаружен у Nj объектов, тогда

(3.5)

В равенстве (3.2) Р ( Di/kj) - вероятность диагноза D после того, как стало известно наличие у рассматриваемого объекта признака kj (апостериорная вероятность диагноза ).

Дуглас У. Хаббард Глава из книги «Как измерить все, что угодно. Оценка стоимости нематериального в бизнесе»
Издательство «Олимп-Бизнес »

Таблица 1. Отдельные строки из таблицы расчётов с использованием байесовской инверсии

Похоже, что удержание покупателей у нас не на высоте. Но мы пересчитаем стоимость этой информации, и хотя она уменьшится, окажется, что провести дополнительные измерения все равно имеет смысл. Выберем еще 40 покупателей, и тогда в сумме их будет 60 человек. Из этих 60 только 39 скажут, что вернутся в наш магазин. Наш новый 90-процентный CI окажется равным 69-80%. Теперь верхняя граница равняется нашему первоначальному критическому порогу 80%, давая 95-процентную уверенность, что доля повторных покупателей низка настолько, что требует от нас серьезных, дорогостоящих изменений.

Расчеты оказались довольно сложными, но помните, что вы можете воспользоваться таблицами, приведенными на нашем вспомогательном сайте. И вполне возможно, что в данном случае сработал бы обсуждавшийся ранее субъективный байесовский метод, применяемый калиброванными экспертами. Возможно, опрос покупателей выявит такие качественные факторы, которые сумеют учесть наши калиброванные специалисты. Однако стоимость результатов этих важных измерений достаточно высока, чтобы оправдать наши дополнительные усилия.

Избегайте «инверсии наблюдения»

Многие задают вопрос: «Какой вывод я могу сделать из этого наблюдения?» Но Байес показал нам, что нередко полезнее задать вопрос: «Что я должен наблюдать, если будет соблюдаться условие X?» Ответ на последний вопрос позволяет разобраться с первым.

Xотя на первый взгляд байесовская инверсия может показаться весьма трудоемкой, она относится к наиболее эффективным из имеющихся в нашем распоряжении методам измерения. Если удастся сформулировать вопрос «Какова вероятность увидеть X, если справедливо Y?» и превратить его в «Какова вероятность того, что справедливо Y, если мы наблюдаем X?», то можно решить огромное число задач по измерению. В сущности, именно так мы и находим ответы на большинство научных вопросов. Если предложенная гипотеза верна, то что мы должны наблюдать?

Напротив, многие менеджеры, похоже, считают, что все измерения сводятся к поиску ответов на вопрос: «Какой я должен сделать вывод из того, что вижу?» Когда кажется, что совершена ошибка наблюдения, люди решают: на этом основании делать выводы нельзя, какой бы низкой ни была вероятность такой ошибки. Однако байесовский анализ показывает, что воображаемые менеджерами ошибки крайне маловероятны и что измерение все равно заметно снизило бы существующую неопределенность. Иными словами, отсутствие, по крайней мере, теоретического понимания байесовской инверсии приводит к переворачиванию вопроса и к формированию убеждения, что маловероятные ошибки сводят ценность измерений к нулю — то есть к самой неудачной разновидности «инверсии наблюдения».

Примечания

1 David M. Grether, Mahmoud A. El-Gamal. Are People Bayesian? Uncovering Behavioral Strategies // Social Science Working Paper 919, 1995, California Institute of Technology.

2 Tom DeMarco, Timothy Lister. Peopleware: Productive Projects and Teams. 2nd ed. New York: Dorset House Publishing, 1999.

FYP — first year profit, прибыль первого года. — Примеч. переводчика.

Неточность: рисунок доли генеральной совокупности приведен в главе 9 (см. рис. 9.2). — Примеч. редактора.

просмотров